
MILLIMAN WHITE PAPER 

See the forest for the trees 1 December 2019 

 

See the forest for the trees 

How to detect outliers in your data using the Isolation Forest algorithm 

 

 

 

 

 

Hyunsu Kim, FSA 

Michael Leitschkis, CERA, DAV 

 
 

Section 1: Introduction 
Outlier detection is the process of identifying data points that 

drastically differ from so-called “normal instances” in a given 

data set. 

Outlier detection delivers critical information across many 

different domains in finance, such as financial reporting, fraud 

detection, and portfolio risk management. Recognizing anomaly 

patterns not only helps us detect potential errors at early stages 

but also enables us to uncover potential insights on the 

underlying data. 

Most of the existing machine learning 

algorithms that can be used for the outlier 

detection hinge on profiling models based 

on normal instances. 

Hence, in this paper we consider a technique called the Isolation 

Forest, which overcomes the shortcomings of classic anomaly 

detection algorithms. It has already been successfully applied 

across other disciplines, ranging from astrophysics to private 

wealth management. In astrophysics, one application has 

attempted to discover a new star by detecting an anomaly image 

compared to those of existing stars.1 In private wealth management, 

the Isolation Forest approach has been helpful in detecting fraud 

and money laundering practices.2 In this paper, we will apply the 

Isolation Forest approach to the life insurance context. 

 

The proposed methodology offers the following advantages over 

traditional approaches:3  

 Explicit isolation of anomalies without profiling normal 

instances 

 Linear time complexity at a low memory requirement 

 Scalability allowing the use of large data sets and high-

dimensional data involving large numbers of attributes 

 The ability to work without knowledge about outliers (labels) in 

the existing data set, as it is an unsupervised learning method, 

unlike alternative supervised techniques requiring expert 

judgment or known labels. 

The purpose of this paper is to discuss an algorithm for an 

efficient automated detection on outliers in both small and large 

data sets. 

The contents of this paper are organized as follows: 

 Section 2: Isolation Forest algorithm walk-through. 

 Section 3: Case studies (univariate and multivariate) that look 

at the underlying market movements of sub-funds for a 

contrived variable annuity portfolio. 

 Section 4: Practical recommendations  and conclusions 

 

  

1 Hariri, S. & Kind M.C. (June 21, 2018). Isolation Forest for Anomaly Detection. 

Retrieved November 15, 2019, from 

http://www.ncsa.illinois.edu/Conferences/LSST18/assets/pdfs/hariri_forest.pdf. 

2 Sharova, E. (May 27, 2018). Video: Unsupervised Anomaly Detection With 

Isolation Forest. PyData. Retrieved November 15, 2019, from 

https://www.youtube.com/watch?v=5p8B2Ikcw-k. 

 

3 Liu, F.T., Ting, K.M., & Zhou, Z.H. (December 2008), Isolation Forest, in 

8th IEEE International Conference on Data Mining (pp. 413-422). IEEE. 

http://www.ncsa.illinois.edu/Conferences/LSST18/assets/pdfs/hariri_forest.pdf
http://www.ncsa.illinois.edu/Conferences/LSST18/assets/pdfs/hariri_forest.pdf
https://www.youtube.com/watch?v=5p8B2Ikcw-k
https://www.youtube.com/watch?v=5p8B2Ikcw-k
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Section 2: Isolation Forest algorithm 

walk-through 
The main purpose of this section is to discuss the algorithm step 

by step, explaining it in layman’s terms.4  

STEP 1A: BINARY DECISION SPLIT 

In this step, we split our data sample. To do so, we randomly 

select one of the attributes (in a simple two-dimensional 

illustration, let us call them Q1 and Q2), and then we randomly 

choose a splitting value for the attribute just selected—anywhere 

between the minimal and the maximal value of that attribute. 

Figure 1 illustrates how Q1 has been selected and then a splitting 

value Q1’ has been chosen. 

FIGURE 1:  BINARY DECISION SPLIT 

 

STEP 1B: GENERATION OF AN ISOLATION TREE 

In this step, we iterate the binary decision split carried out in  

Step 1a. It takes fewer iterations to isolate anomalous data points 

than normal ones—see the data point in the lower-right corner in 

Figure 2, for which two iterations have been sufficient. This 

collection of binary splits is called an isolation tree. Each binary 

split can be thought of as an internal node of the tree. One split 

value (test) and exactly two branches (daughter nodes) emanate 

from an internal node: one containing points less than the split 

value (such as Q1’ above) and the other comprised of points 

greater than the split value. When a point has been isolated, this 

corresponds to an external node. 

Under the path length of a point, we understand the number of 

edges the point passes until it is isolated. For example, the path 

length for the aforementioned point in the lower-right corner in 

Figure 2 equals 2. 

FIGURE 2:  GENERATION OF AN ISOLATION TREE 

 

Note that we iterate the binary decision split until we reach a tree 

height, which can be either user-defined or set by the algorithm. 

In the latter case, a standard choice is the average tree height, 

which can be shown to be proportional to the logarithm of the 

sample size.5 Setting such a limit allows us to save computational 

resources and is natural because points with path lengths shorter 

than the average are of interest (most likely outliers). 

STEP 2: GENERATION OF AN ISOLATION FOREST 

Next, we repeat all of the steps above in order to generate 

another isolation tree. We continue our iterations until we have 

created a large enough collection of isolation trees, which is 

called an Isolation Forest. 

As the reader may expect, there is no precise mathematical 

definition as to how many trees make up a forest. For our 

purposes, the reader might think of 15 to 100 trees as a sensible 

size for an Isolation Forest. 

STEP 3: ANOMALY SCORE CALCULATION FOR EACH  

DATA POINT 

For each data point in our original data set, we now execute the 

following process: 

Feed a data point into one of the trees in the forest. Find its 

position in the tree by successively applying the binary splits at 

each internal node being passed by the point. Once the position 

of the point in the tree has been found, the anomaly score of a 

given data point is calculated as 𝑆 = 2−𝐸/𝑐(𝑛), where 𝐸 is the 

average path length for this data point and 𝑐(𝑛) is a universal 

renormalizing constant, which is a function of the sample size 𝑛 

and measures the expected number of splits to isolate a given   

4 For a more technical exposition, including relevant model validation results, 

please refer to Liu, F.T. et al., op cit. 

5 Detailed in Liu, F.T. et al., op cit. 

6 Ibid. 
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point within this sample size. More precisely, consider a forest 

made of 𝑁 trees. For each tree 𝑖, denote the number of binary 

splits needed to find the data point of interest by 𝑀𝑖 , and the 

number of remaining points in the final node by 𝑘𝑖 (which can be 

two or more because a tree height limit has been set). Then the 

average path length is calculated as: 

𝐸 =
1

𝑁
∑ 𝑀𝑖

𝑁

𝑖=1

+ 1𝑘𝑖≥2𝑐(𝑘𝑖) 

Note that the additive adjustment representing the expected 

number of splits when multiple points (𝑘𝑖 ≥ 2) remains in  

the external node in order to recover an unbiased expected  

path length. 

 We calculate this anomaly score for each tree and average 

them out across many different trees. The average anomaly 

score across the trees will be then the final anomaly score for 

a given data point in question. 

 Numerically, an outlier will feature an anomaly score around 

0.6, while a normal instance will typically produce an anomaly 

score below 0.5.6  

Section 3: Simple case study 
In this section, we expand on the example from the previous 

section and develop it step by step to be more fully illustrative of 

typical Isolation Forest use cases. 

To be more precise, we analyze a contrived variable annuity 

portfolio where the policyholders have the flexibility to allocate 

their assets to up to 14 funds. For the sake of simplicity, we look 

into just one policy and examine the evolution of the 

policyholder’s overall account value (AV) over time in order to 

understand which daily data constitute normal instances and 

which could be outliers. 

UNIVARIATE CASE 

In order to formulate this problem as a univariate one, we ignore 

the evolution of the 14 funds mentioned above over time and only 

consider the overall account value for the time being. Revisiting 

the data shown at the end of Section 2, we look into the daily AV 

evolution over six days. 

AV in this example (the first field of Figure 4) stands for a 

policyholder’s Account Value and x0,…,x5 represent six different 

time points. 

For the sake of visual simplicity, here we produce a single 

isolation tree in Figure 3. 

FIGURE 3:  ISOLATION TREE FOR UNIVARIATE CASE 

 

Note: we built the tree up to the depth (tree height limit) of  

RoundUp (log2(sample size)) = 3 

Applying Step 3 of the Isolation Forest algorithm described 

above, we produce the anomaly scores for each data point as 

listed in Figure 4. For the sake of clarity, we also provide 

calculation details for the first data point (a potential outlier) and 

the last data point (a normal instance): 

FIGURE 4:  ANOMALY SCORE FOR UNIVARIATE CASE 

 AV 

ANOMALY 

SCORE PATH 

NUMBER OF DATA 

POINTS PER LEAF 

x0 325,380 0.7741 ‘R’ 6, 1 

x1 306,293 0.5992 ‘L’, ‘L’ 6, 5, 1 

x2 310,501 0.3405 ‘L’, ‘R’, ‘R’ 6, 5, 4, 3 

x3 308,657 0.4638 ‘L’, ‘R’, ‘L’ 6, 5, 4, 1 

x4 310,050 0.3405 ‘L’, ‘R’, ‘R’ 6, 5, 4, 3 

x5 310,698 0.3405 ‘L’, ‘R’, ‘R’ 6, 5, 4, 3 

For the first data point: 

 c(6) equals 2.7066  

 E(h) equals 1, because x0 is the only data point in its final 

node and only one binary split has been needed to separate 

x0 in our sample tree 

 Anomaly score S becomes 0.7741 

For the last data point: 

 c(6) equals 2.7066 

 Because x5 is one of three data points in its external node 

(the tree has not been built any further due to the height limit 

parameter allowing reductions of computational complexity), 

we are going to need the c(3) adjustment term in order to 

calculate E(h): 

− c(3) equals 1.2074 

− E(h) equals 3 + c(3) = 4.2074 

 Anomaly score S becomes 0.3405. 

Sample Data Set

x1, x2, x3, x4, x5

x1 x2, x3, x4, x5

x3 x2, x4, x5

x0
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Note that, as mentioned above, we have merely considered one 

isolation tree in this initial example. Another sampling would 

typically lead to a different isolation tree, and this is why the 

algorithm considers a whole Isolation Forest, in order to produce 

stable average estimates for anomaly scores. In other words, the 

purpose of this initial example has been merely to illustrate how 

the formulae in Step 3 of the algorithm works. In the following 

section, we expand this little example further in order to obtain a 

more realistic view of the Isolation Forest algorithm. 

MULTIVARIATE CASE 

Let us now extend the univariate case study above by also 

considering the evolution of sub-funds—Fund1 to Fund14—over 

time, not just the evolution of the overall account value. While our 

multivariate problem is of dimension 15, let us visualize the approach 

in dimension 3, restricting ourselves to AV, Fund1, and Fund14 only, 

before returning to the actual 15-dimensional problem. 

Once again, we apply the Isolation Forest algorithm described in 

Section 2 above. Note that, this time, binary splits are carried out in 

any of the three dimensions (AV, Fund1, and Fund14), rather than in 

just the one dimension in the univariate case above. See Figure 5 for 

an illustration via a sample isolation tree, where we denote for each 

node in which randomly sampled dimension and at which randomly 

sampled value the corresponding binary split has taken place: 

FIGURE 5:  ISOLATION TREE FOR MULTIVARIATE CASE 

 

Next, we can calculate the anomaly scores for this tree—for the 

results, see Figure 6. 

FIGURE 6:  ANOMALY SCORES FOR MULTIVARIATE CASE 

 AV FUND 1 FUND14 

ANOMALY 

SCORES PATH 

NUMBER 

OF DATA 

POINTS 

PER LEAF 

x0 325,380 181,679 1,439 0.7741 ‘R’ 6, 1 

x1 306,293 172,234 1,442 0.5992 ‘L’, ‘L’ 6, 5, 1 

x2 310,501 175,110 1,464 0.3405 ‘L’, ‘R’, ‘R’ 6, 5, 4, 3 

x3 308,657 173,885 1,453 0.4638 ‘L’, ‘R’, ‘L’ 6, 5, 4, 1 

x4 310,050 174,831 1,459 0.3405 ‘L’, ‘R’, ‘R’ 6, 5, 4, 3 

x5 310,698 175,227 1,460 0.3405 ‘L’, ‘R’, ‘R’ 6, 5, 4, 3 

Please remember that the Isolation Forest algorithm would 

require us to repeat this calculation over, say, 15 trees and 

produce average anomaly scores. However, let us skip this step 

and instead focus on the question how we could enhance the 

analysis performed so far in order to make a more informed 

decision as to whether or not the “outlier candidate” data point x0 

would indeed constitute an outlier. 

It turns out that we could “transpose” our multivariate data set by 

considering a multivariate Isolation Forest problem in the 

dimensions x0,…,x5 with data points being AV, Fund 1,…,Fund 

14. However, in order to infer something useful from this angle, 

we should reflect the fact that the values of different sub-funds 

are of different orders of magnitude. Therefore, we perform a 

minimum/maximum normalization on these data before applying 

the Isolation Forest algorithm. Under this normalization, the 

minimal value of a variable is replaced by 0, the maximal value is 

replaced by 1 and intermediate values are replaced by appropriate 

values between 0 and 1, reflecting the original distances to the 

minimum and the maximum, as shown in Figure 7. 

FIGURE 7:  TRANSPOSED DATA AFTER NORMALIZATION 

 AV FUND1 FUND14 

x0 1.0000 1.0000 0.0000 

x1 0.0000 0.0000 0.1216 

x2 0.2204 0.3045 1.0000 

x3 0.1238 0.1748 0.5834 

x4 0.1968 0.2749 0.7947 

x5 0.2308 0.3169 0.8410 

 

  

Sample Data Set

x1, x2, x3, x4, x5

x1, x3

x1 x3

x2, x4, x5

x4, x5 x2

x0

Fund1 / 175492.93 

AV / 308891.132 

AV / 308463.401 Fund14 / 1459.737 
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Now we can meaningfully apply the Isolation Forest algorithm to our “transposed” data points of AV, Fund1, and Fund14 in the 

multivariate world of dimensions x0.,…,x5. A sample isolation tree for this problem is displayed in Figure 8.  

FIGURE 8:  ISOLATION TREE FOR TRANSPOSED DATA 

 

Next, we can calculate the anomaly scores for this isolation tree via the usual approach and obtain the results shown in Figure 9. 

FIGURE 9:  ANOMALY SCORES FOR TRANSPOSED DATA 

 X0 X1 X2 X3 X4 X5 ANOMALY SCORES PATH 

AV 1 0 0.2204 0.1238 0.1968 0.2308 0.3172 ‘R’, ‘L’ 

Fund1 1 0 0.3045 0.1748 0.2749 0.3167 0.3172 ‘R’, ‘R’ 

Fund14 0 0.1216 1 0.5834 0.7947 0.8410 0.5632 ‘L’ 

In this simple three-dimensional example, Fund14 has been assigned a rather high anomaly score compared to AV and Fund1. This 

makes intuitive sense, as both AV and Fund1 attain their maximal values at the time period x0 while Fund14 does not do so. Of course, 

the reader might raise a question whether or not the anomaly score of 0.5632 were high enough to be called an outlier. We will return to 

this question in the next section. 

If we apply the procedures explained above in dimension 3 to our 15-dimensional problem featuring AV and all 14 sub-funds from 

Fund1 to Fund14, consider the six-dimensional transposed problem in dimensions x0-x5 as above and obtain the anomaly scores for 

the data points AV,…,Fund14 shown in Figure 10. 

FIGURE 10:  ANOMALY SCORES FOR 15-DIMENSIONAL DATA 

 AV FUND1 FUND2 FUND3 FUND4 FUND5 FUND.. FUND14 

x0 325,380 181,679 62,365 2,396 20,623 784 .. 1,439 

x1 306,293 172,234 57,567 2,397 20,688 787 .. 1,442 

x2 310,501 175,110 58,572 2,457 20,966 799 .. 1,464 

x3 308,657 173,885 58,159 2,418 20,883 796 .. 1,453 

x4 310,050 174,831 58,558 2,430 20,975 801 .. 1,459 

x5 310,698 175,227 58,747 2,433 20,999 802 .. 1,460 

Anomaly Score 0.7909 0.7080 0.6219 0.4771 0.4488 0.4162 .. 0.4336 

  

Sample Data Set

Fund14 AV, Fund1

AV Fund1

x0 / 0.757 

x4 / 0.231 
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We can visualize these anomaly scores as shown in Figure 11. 

Please note that we are omitting the Funds 6-13 from this graph 

for the ease of readability. 

FIGURE 11:  ANOMALY SCORES FOR 15-DIMENSIONAL DATA 

 

In this example, we can clearly see that the corresponding 

anomaly scores for AV, Fund1, and Fund2 are larger than the 

ones of the other funds. In other words, given historical movements 

of the AV and all its funds, the historical movements of Fund1 and 

Fund2 seem to be off the trend displayed by all the other funds. 

Section 4: Practical recommendations 
and conclusion 
SUBSAMPLING 

As proposed in Liu, F.T. et al., in dealing with large data sets, the 

subsampling technique is highly recommended. By subsampling, 

we are simply choosing a rather smaller subset of the initial data 

set and generating our Isolation Forest from the subsample. 

This subsampling technique alleviates the following two issues: 

 Swamping: There are just too many data points so that normal 

instances can be “close” to anomalies. In other words, it is 

expected in this case that a large number of partitions are 

needed to isolate anomalies. It's much harder to differentiate 

the anomalies against normal instances. 

 Masking: There are so many anomalies they form an anomaly 

cluster, so to speak. In other words, again, a large number of 

partitions to isolate anomalies is expected due to the rather 

dense and large anomaly cluster. 

DIMENSIONALITY REDUCTION 

A real-life outlier detection problem may often be a high-

dimensional one. In that case, it may be possible to use some 

dimensionality reduction techniques prior to applying the Isolation 

Forest algorithm. For example: 

 Principal component analysis (PCA): A widely used 

unsupervised linear dimensionality reduction technique. It 

essentially reduces the initial dimension to a few factors that 

have significant explanatory power  

 Autoencoder (AE): A rather modern unsupervised 

linear/nonlinear dimensionality reduction technique. The gist of 

this technique is ultimately the same as that of the PCA. 

However, AE uses artificial neural net structures. This 

inherently allows the model to take into account the 

nonlinearity across initial factors. 

STATISTICAL CRITERION 

For a practitioner interested in implementing the Isolation Forest 

algorithm, the main question is how to embed this algorithm in an 

automated reporting solution. While human eyes can spot some 

outliers in an “intuitive” way, an automated solution must rely on 

quantitative ways of determining for each data point whether or 

not it is an outlier. 

The most obvious approach would be to implement a “point 

threshold”—a data point would be considered an outlier if and 

only if its anomaly score is above a certain threshold, such as 

0.75. A more refined approach would be to consider a 

combination of a “point threshold” and a statistical one. For 

example, we could consider the distribution of the anomaly 

scores and examine for each data point how the deletion of this 

data point would impact the distribution. A possible statistical 

criterion could be based on the kurtosis: 

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠(𝑆[𝑇]) > 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠(𝑆[𝑡]) + 𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 𝐺𝑎𝑝 

Here, 𝑆[𝑇] is a vector of all anomaly scores including a potential 

outlier while 𝑆[𝑡] is a vector of anomaly scores for all but 

excluding the potential outlier and Significance Gap is a positive 

user-defined parameter. In Figure 12, we can see how the 

kurtosis on the right diagram is significantly higher than that on 

the left diagram, because a data point featuring a high anomaly 

score is included in the former but not in the latter. 
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FIGURE 12:  DIFFERENT KURTOSIS 

Note: The underlying data for this visualization is not relevant to the data used in the previous sections. The data was used merely to illustrate the concept of kurtosis.

EXPERT JUDGMENT 

Another important practical consideration is the degree of expert 

judgment required to use the Isolation Forest algorithm. As 

discussed in Section 2 above, the user would have to specify a 

few parameters such as the total number of trees or the tree 

depth. A possible approach is to set the total number of trees in 

the forest at 20 to 30 and to set the simulated tree length to the 

logarithm of the sample size: 

 According to Liu, F.T. et al., the algorithm converges well 

before the forest size of 100 and we typically produce good 

results using a forest size of 20 to 30 or even 15 trees.  

 Generation of long trees should not be necessary to detect 

outliers. 

That said, the user should be aware of the following caveat: If the 

movements of the underlying data in a given vector space are 

volatile and/or there are known data quality issues, then the 

Isolation Forest algorithm would not necessarily be able to 

reliably detect outliers. 

DATA SETS CONTAINING CATEGORICAL VARIABLES 

So far, we have only considered continuous data in the sections 

above, but real-life problems often contain mixed data sets 

featuring both continuous and categorical variables.  

Therefore, we would also like to indicate how to apply the 

Isolation Forest algorithm to a problem that contains both 

continuous variables and categorical ones. Please refer to the 

appendix for a rather detailed example. 

CONCLUSION 

The Isolation Forest algorithm explicitly isolates anomalies 

instead of profiling normal instances, unlike more traditional 

outlier detection algorithms. The gist of the algorithm is that the 

“fewer and different” data points will display significantly shorter 

isolation tree paths, closer to the root of each tree, as opposed to 

the “more and common” data points. 

The algorithm works well with both small and large data sets. It 

performs well on smaller data sets because it does not need to 

train a model based on a large number of normal instances.  

Equally, it is capable of efficiently scaling for good results and 

performance on larger data sets, due to the subsampling step. 

Last but not least, it has been shown that the Isolation Forest 

algorithm features a linear run-time complexity and performs 

better on high-dimensional problems than typical 

distance/density-based approaches. 

We conclude our paper by listing the main practical benefits of 

using the Isolation Forest algorithm: 

 The Isolation Forest unlocks insights from large and small 

underlying data 

 It can deal with both continuous and categorical data 

 The algorithm only requires a moderate degree of expert 

judgment and hence lends itself well to an automated 

application 

We have seen the Isolation Forest improve the robustness of 

outsourcing solutions. More generally speaking, this algorithm 

can help enhance any financial reporting process by detecting 

bad input data in an automated way. 
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Appendix 
For the sake of simplicity, we would like to illustrate our 

suggested treatment of categorical variables on a simple two-

dimensional example rather than in theoretical terms. 

Figure 13 displays a contrived weather data set featuring just two 

dimensions, namely a continuous variable temp (temperature) 

and a categorical variable type with four possible choices, 

namely “cloudy,” “rainy,” “snowy,” and “sunny.” 

FIGURE 13:  WEATHER DATA FEATURING TWO DIMENSIONS 

 TEMP TYPE 

x0 20 cloudy 

x1 28 sunny 

x2 22 rainy 

x3 33 snowy 

x4 32 sunny 

x5 16 cloudy 

In order to apply the algorithm discussed above to this problem, 

we would have to somehow assign numerical values to the 

weather types. A naïve way of doing this would be via the 

alphabetical order—e.g. we might assign 0 to “cloudy,” 1 to 

“rainy,” 2 to “snowy,” and 3 to “sunny.” The reader might already 

realize why this would not be a great idea—indeed, many binary 

splits in the dimension “type,” for example a split at 1.5—would 

not discern between the weather types “snowy” and “sunny,” 

although these weather types are very different from one 

another. So exactly how does this problem differ from the purely 

continuous ones discussed above? If the variable “type” had 

been a continuous one, we would have been able to implicitly 

assume that its values are all logically ordered, so that, e.g., a 

value of 2 would be genuinely “closer” to a value of 3 than, say, a 

value of 0 in the Euclidean sense. However, this implicit assumption 

is apparently not true in the nominal categorical case. In other 

words, one artificial numerical ordering of the nominal categorical 

variable would not be genuinely “better” than the others. 

Therefore, we are facing the question of what would happen if 

we tried out two different mappings assigning numerical values 

to our nominal categorical weather types. Figure 14 shows one 

such artificial labelling for our nominal categorical variable—

label encoding. 

FIGURE 14:  LABEL ENCODING FOR WEATHER DATA 

 TEMP TYPE RANDOM LABELLING OF WEATHER TYPE 

x0 20 cloudy 0 

x1 28 sunny 1 

x2 22 rainy 2 

x3 33 snowy 3 

x4 32 sunny 1 

x5 16 cloudy 0 

Making use of this labeling, we can generate the isolation tree 

shown in Figure 15. 

FIGURE 15:  ISOLATION TREE FOR WEATHER DATA 

 

So far, so good, it might seem. But what would happen if we 

used a different artificial labeling for our nominal categorical 

variable? Figure 16 shows such an alternative labeling. 

FIGURE 16:  ALTERNATIVE LABELING FOR WEATHER DATA 

 TEMP TYPE RANDOM LABELLING OF WEATHER TYPE 

x0 20 cloudy 0 

x1 28 sunny 3 

x2 22 rainy 1 

x3 33 snowy 2 

x4 32 sunny 3 

x5 16 cloudy 0 

  

temp I / 25 

type I /1.5 type I / 2.5 

temp / 18 temp I / 30 
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Applying this labeling, we can generate the isolation tree shown in 

Figure 17. 

FIGURE 17:  ISOLATION TREE FOR WEATHER DATA APPLYING 

ALTERNATIVE LABELING 

 

As we can see, we have now obtained an isolation tree that 

differs from that shown in Figure 15. There is no “canonical” 

assignment of numerical values to the nominal categorical 

variable that would be “better” than the others, and an application 

of a particular assignment throughout the process would 

introduce spurious bias. 

Therefore, our suggestion is to randomly reshuffle the assignment of 

numerical values to the nominal categorical variable at each child 

node of the tree. This additional randomization step will enable 

the algorithm to properly deal with categorical variables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

temp II / 25 

type II / 1.5 type II / 2.5 

temp / 18 temp II / 30 
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