
MILLIMAN WHITE PAPER

See the forest for the trees 1 December 2019

See the forest for the trees

How to detect outliers in your data using the Isolation Forest algorithm

Hyunsu Kim, FSA

Michael Leitschkis, CERA, DAV

Section 1: Introduction
Outlier detection is the process of identifying data points that

drastically differ from so-called “normal instances” in a given

data set.

Outlier detection delivers critical information across many

different domains in finance, such as financial reporting, fraud

detection, and portfolio risk management. Recognizing anomaly

patterns not only helps us detect potential errors at early stages

but also enables us to uncover potential insights on the

underlying data.

Most of the existing machine learning

algorithms that can be used for the outlier

detection hinge on profiling models based

on normal instances.

Hence, in this paper we consider a technique called the Isolation

Forest, which overcomes the shortcomings of classic anomaly

detection algorithms. It has already been successfully applied

across other disciplines, ranging from astrophysics to private

wealth management. In astrophysics, one application has

attempted to discover a new star by detecting an anomaly image

compared to those of existing stars.1 In private wealth management,

the Isolation Forest approach has been helpful in detecting fraud

and money laundering practices.2 In this paper, we will apply the

Isolation Forest approach to the life insurance context.

The proposed methodology offers the following advantages over

traditional approaches:3

 Explicit isolation of anomalies without profiling normal

instances

 Linear time complexity at a low memory requirement

 Scalability allowing the use of large data sets and high-

dimensional data involving large numbers of attributes

 The ability to work without knowledge about outliers (labels) in

the existing data set, as it is an unsupervised learning method,

unlike alternative supervised techniques requiring expert

judgment or known labels.

The purpose of this paper is to discuss an algorithm for an

efficient automated detection on outliers in both small and large

data sets.

The contents of this paper are organized as follows:

 Section 2: Isolation Forest algorithm walk-through.

 Section 3: Case studies (univariate and multivariate) that look

at the underlying market movements of sub-funds for a

contrived variable annuity portfolio.

 Section 4: Practical recommendations and conclusions

1 Hariri, S. & Kind M.C. (June 21, 2018). Isolation Forest for Anomaly Detection.

Retrieved November 15, 2019, from

http://www.ncsa.illinois.edu/Conferences/LSST18/assets/pdfs/hariri_forest.pdf.

2 Sharova, E. (May 27, 2018). Video: Unsupervised Anomaly Detection With

Isolation Forest. PyData. Retrieved November 15, 2019, from

https://www.youtube.com/watch?v=5p8B2Ikcw-k.

3 Liu, F.T., Ting, K.M., & Zhou, Z.H. (December 2008), Isolation Forest, in

8th IEEE International Conference on Data Mining (pp. 413-422). IEEE.

http://www.ncsa.illinois.edu/Conferences/LSST18/assets/pdfs/hariri_forest.pdf
http://www.ncsa.illinois.edu/Conferences/LSST18/assets/pdfs/hariri_forest.pdf
https://www.youtube.com/watch?v=5p8B2Ikcw-k
https://www.youtube.com/watch?v=5p8B2Ikcw-k

MILLIMAN WHITE PAPER

See the forest for the trees 2 December 2019

Section 2: Isolation Forest algorithm

walk-through
The main purpose of this section is to discuss the algorithm step

by step, explaining it in layman’s terms.4

STEP 1A: BINARY DECISION SPLIT

In this step, we split our data sample. To do so, we randomly

select one of the attributes (in a simple two-dimensional

illustration, let us call them Q1 and Q2), and then we randomly

choose a splitting value for the attribute just selected—anywhere

between the minimal and the maximal value of that attribute.

Figure 1 illustrates how Q1 has been selected and then a splitting

value Q1’ has been chosen.

FIGURE 1: BINARY DECISION SPLIT

STEP 1B: GENERATION OF AN ISOLATION TREE

In this step, we iterate the binary decision split carried out in

Step 1a. It takes fewer iterations to isolate anomalous data points

than normal ones—see the data point in the lower-right corner in

Figure 2, for which two iterations have been sufficient. This

collection of binary splits is called an isolation tree. Each binary

split can be thought of as an internal node of the tree. One split

value (test) and exactly two branches (daughter nodes) emanate

from an internal node: one containing points less than the split

value (such as Q1’ above) and the other comprised of points

greater than the split value. When a point has been isolated, this

corresponds to an external node.

Under the path length of a point, we understand the number of

edges the point passes until it is isolated. For example, the path

length for the aforementioned point in the lower-right corner in

Figure 2 equals 2.

FIGURE 2: GENERATION OF AN ISOLATION TREE

Note that we iterate the binary decision split until we reach a tree

height, which can be either user-defined or set by the algorithm.

In the latter case, a standard choice is the average tree height,

which can be shown to be proportional to the logarithm of the

sample size.5 Setting such a limit allows us to save computational

resources and is natural because points with path lengths shorter

than the average are of interest (most likely outliers).

STEP 2: GENERATION OF AN ISOLATION FOREST

Next, we repeat all of the steps above in order to generate

another isolation tree. We continue our iterations until we have

created a large enough collection of isolation trees, which is

called an Isolation Forest.

As the reader may expect, there is no precise mathematical

definition as to how many trees make up a forest. For our

purposes, the reader might think of 15 to 100 trees as a sensible

size for an Isolation Forest.

STEP 3: ANOMALY SCORE CALCULATION FOR EACH

DATA POINT

For each data point in our original data set, we now execute the

following process:

Feed a data point into one of the trees in the forest. Find its

position in the tree by successively applying the binary splits at

each internal node being passed by the point. Once the position

of the point in the tree has been found, the anomaly score of a

given data point is calculated as 𝑆 = 2−𝐸/𝑐(𝑛), where 𝐸 is the

average path length for this data point and 𝑐(𝑛) is a universal

renormalizing constant, which is a function of the sample size 𝑛

and measures the expected number of splits to isolate a given

4 For a more technical exposition, including relevant model validation results,

please refer to Liu, F.T. et al., op cit.

5 Detailed in Liu, F.T. et al., op cit.

6 Ibid.

MILLIMAN WHITE PAPER

See the forest for the trees 3 December 2019

point within this sample size. More precisely, consider a forest

made of 𝑁 trees. For each tree 𝑖, denote the number of binary

splits needed to find the data point of interest by 𝑀𝑖 , and the

number of remaining points in the final node by 𝑘𝑖 (which can be

two or more because a tree height limit has been set). Then the

average path length is calculated as:

𝐸 =
1

𝑁
∑ 𝑀𝑖

𝑁

𝑖=1

+ 1𝑘𝑖≥2𝑐(𝑘𝑖)

Note that the additive adjustment representing the expected

number of splits when multiple points (𝑘𝑖 ≥ 2) remains in

the external node in order to recover an unbiased expected

path length.

 We calculate this anomaly score for each tree and average

them out across many different trees. The average anomaly

score across the trees will be then the final anomaly score for

a given data point in question.

 Numerically, an outlier will feature an anomaly score around

0.6, while a normal instance will typically produce an anomaly

score below 0.5.6

Section 3: Simple case study
In this section, we expand on the example from the previous

section and develop it step by step to be more fully illustrative of

typical Isolation Forest use cases.

To be more precise, we analyze a contrived variable annuity

portfolio where the policyholders have the flexibility to allocate

their assets to up to 14 funds. For the sake of simplicity, we look

into just one policy and examine the evolution of the

policyholder’s overall account value (AV) over time in order to

understand which daily data constitute normal instances and

which could be outliers.

UNIVARIATE CASE

In order to formulate this problem as a univariate one, we ignore

the evolution of the 14 funds mentioned above over time and only

consider the overall account value for the time being. Revisiting

the data shown at the end of Section 2, we look into the daily AV

evolution over six days.

AV in this example (the first field of Figure 4) stands for a

policyholder’s Account Value and x0,…,x5 represent six different

time points.

For the sake of visual simplicity, here we produce a single

isolation tree in Figure 3.

FIGURE 3: ISOLATION TREE FOR UNIVARIATE CASE

Note: we built the tree up to the depth (tree height limit) of

RoundUp (log2(sample size)) = 3

Applying Step 3 of the Isolation Forest algorithm described

above, we produce the anomaly scores for each data point as

listed in Figure 4. For the sake of clarity, we also provide

calculation details for the first data point (a potential outlier) and

the last data point (a normal instance):

FIGURE 4: ANOMALY SCORE FOR UNIVARIATE CASE

 AV

ANOMALY

SCORE PATH

NUMBER OF DATA

POINTS PER LEAF

x0 325,380 0.7741 ‘R’ 6, 1

x1 306,293 0.5992 ‘L’, ‘L’ 6, 5, 1

x2 310,501 0.3405 ‘L’, ‘R’, ‘R’ 6, 5, 4, 3

x3 308,657 0.4638 ‘L’, ‘R’, ‘L’ 6, 5, 4, 1

x4 310,050 0.3405 ‘L’, ‘R’, ‘R’ 6, 5, 4, 3

x5 310,698 0.3405 ‘L’, ‘R’, ‘R’ 6, 5, 4, 3

For the first data point:

 c(6) equals 2.7066

 E(h) equals 1, because x0 is the only data point in its final

node and only one binary split has been needed to separate

x0 in our sample tree

 Anomaly score S becomes 0.7741

For the last data point:

 c(6) equals 2.7066

 Because x5 is one of three data points in its external node

(the tree has not been built any further due to the height limit

parameter allowing reductions of computational complexity),

we are going to need the c(3) adjustment term in order to

calculate E(h):

− c(3) equals 1.2074

− E(h) equals 3 + c(3) = 4.2074

 Anomaly score S becomes 0.3405.

Sample Data Set

x1, x2, x3, x4, x5

x1 x2, x3, x4, x5

x3 x2, x4, x5

x0

MILLIMAN WHITE PAPER

See the forest for the trees 4 December 2019

Note that, as mentioned above, we have merely considered one

isolation tree in this initial example. Another sampling would

typically lead to a different isolation tree, and this is why the

algorithm considers a whole Isolation Forest, in order to produce

stable average estimates for anomaly scores. In other words, the

purpose of this initial example has been merely to illustrate how

the formulae in Step 3 of the algorithm works. In the following

section, we expand this little example further in order to obtain a

more realistic view of the Isolation Forest algorithm.

MULTIVARIATE CASE

Let us now extend the univariate case study above by also

considering the evolution of sub-funds—Fund1 to Fund14—over

time, not just the evolution of the overall account value. While our

multivariate problem is of dimension 15, let us visualize the approach

in dimension 3, restricting ourselves to AV, Fund1, and Fund14 only,

before returning to the actual 15-dimensional problem.

Once again, we apply the Isolation Forest algorithm described in

Section 2 above. Note that, this time, binary splits are carried out in

any of the three dimensions (AV, Fund1, and Fund14), rather than in

just the one dimension in the univariate case above. See Figure 5 for

an illustration via a sample isolation tree, where we denote for each

node in which randomly sampled dimension and at which randomly

sampled value the corresponding binary split has taken place:

FIGURE 5: ISOLATION TREE FOR MULTIVARIATE CASE

Next, we can calculate the anomaly scores for this tree—for the

results, see Figure 6.

FIGURE 6: ANOMALY SCORES FOR MULTIVARIATE CASE

 AV FUND 1 FUND14

ANOMALY

SCORES PATH

NUMBER

OF DATA

POINTS

PER LEAF

x0 325,380 181,679 1,439 0.7741 ‘R’ 6, 1

x1 306,293 172,234 1,442 0.5992 ‘L’, ‘L’ 6, 5, 1

x2 310,501 175,110 1,464 0.3405 ‘L’, ‘R’, ‘R’ 6, 5, 4, 3

x3 308,657 173,885 1,453 0.4638 ‘L’, ‘R’, ‘L’ 6, 5, 4, 1

x4 310,050 174,831 1,459 0.3405 ‘L’, ‘R’, ‘R’ 6, 5, 4, 3

x5 310,698 175,227 1,460 0.3405 ‘L’, ‘R’, ‘R’ 6, 5, 4, 3

Please remember that the Isolation Forest algorithm would

require us to repeat this calculation over, say, 15 trees and

produce average anomaly scores. However, let us skip this step

and instead focus on the question how we could enhance the

analysis performed so far in order to make a more informed

decision as to whether or not the “outlier candidate” data point x0

would indeed constitute an outlier.

It turns out that we could “transpose” our multivariate data set by

considering a multivariate Isolation Forest problem in the

dimensions x0,…,x5 with data points being AV, Fund 1,…,Fund

14. However, in order to infer something useful from this angle,

we should reflect the fact that the values of different sub-funds

are of different orders of magnitude. Therefore, we perform a

minimum/maximum normalization on these data before applying

the Isolation Forest algorithm. Under this normalization, the

minimal value of a variable is replaced by 0, the maximal value is

replaced by 1 and intermediate values are replaced by appropriate

values between 0 and 1, reflecting the original distances to the

minimum and the maximum, as shown in Figure 7.

FIGURE 7: TRANSPOSED DATA AFTER NORMALIZATION

 AV FUND1 FUND14

x0 1.0000 1.0000 0.0000

x1 0.0000 0.0000 0.1216

x2 0.2204 0.3045 1.0000

x3 0.1238 0.1748 0.5834

x4 0.1968 0.2749 0.7947

x5 0.2308 0.3169 0.8410

Sample Data Set

x1, x2, x3, x4, x5

x1, x3

x1 x3

x2, x4, x5

x4, x5 x2

x0

Fund1 / 175492.93

AV / 308891.132

AV / 308463.401 Fund14 / 1459.737

MILLIMAN WHITE PAPER

See the forest for the trees 5 December 2019

Now we can meaningfully apply the Isolation Forest algorithm to our “transposed” data points of AV, Fund1, and Fund14 in the

multivariate world of dimensions x0.,…,x5. A sample isolation tree for this problem is displayed in Figure 8.

FIGURE 8: ISOLATION TREE FOR TRANSPOSED DATA

Next, we can calculate the anomaly scores for this isolation tree via the usual approach and obtain the results shown in Figure 9.

FIGURE 9: ANOMALY SCORES FOR TRANSPOSED DATA

 X0 X1 X2 X3 X4 X5 ANOMALY SCORES PATH

AV 1 0 0.2204 0.1238 0.1968 0.2308 0.3172 ‘R’, ‘L’

Fund1 1 0 0.3045 0.1748 0.2749 0.3167 0.3172 ‘R’, ‘R’

Fund14 0 0.1216 1 0.5834 0.7947 0.8410 0.5632 ‘L’

In this simple three-dimensional example, Fund14 has been assigned a rather high anomaly score compared to AV and Fund1. This

makes intuitive sense, as both AV and Fund1 attain their maximal values at the time period x0 while Fund14 does not do so. Of course,

the reader might raise a question whether or not the anomaly score of 0.5632 were high enough to be called an outlier. We will return to

this question in the next section.

If we apply the procedures explained above in dimension 3 to our 15-dimensional problem featuring AV and all 14 sub-funds from

Fund1 to Fund14, consider the six-dimensional transposed problem in dimensions x0-x5 as above and obtain the anomaly scores for

the data points AV,…,Fund14 shown in Figure 10.

FIGURE 10: ANOMALY SCORES FOR 15-DIMENSIONAL DATA

 AV FUND1 FUND2 FUND3 FUND4 FUND5 FUND.. FUND14

x0 325,380 181,679 62,365 2,396 20,623 784 .. 1,439

x1 306,293 172,234 57,567 2,397 20,688 787 .. 1,442

x2 310,501 175,110 58,572 2,457 20,966 799 .. 1,464

x3 308,657 173,885 58,159 2,418 20,883 796 .. 1,453

x4 310,050 174,831 58,558 2,430 20,975 801 .. 1,459

x5 310,698 175,227 58,747 2,433 20,999 802 .. 1,460

Anomaly Score 0.7909 0.7080 0.6219 0.4771 0.4488 0.4162 .. 0.4336

Sample Data Set

Fund14 AV, Fund1

AV Fund1

x0 / 0.757

x4 / 0.231

MILLIMAN WHITE PAPER

See the forest for the trees 6 December 2019

We can visualize these anomaly scores as shown in Figure 11.

Please note that we are omitting the Funds 6-13 from this graph

for the ease of readability.

FIGURE 11: ANOMALY SCORES FOR 15-DIMENSIONAL DATA

In this example, we can clearly see that the corresponding

anomaly scores for AV, Fund1, and Fund2 are larger than the

ones of the other funds. In other words, given historical movements

of the AV and all its funds, the historical movements of Fund1 and

Fund2 seem to be off the trend displayed by all the other funds.

Section 4: Practical recommendations
and conclusion
SUBSAMPLING

As proposed in Liu, F.T. et al., in dealing with large data sets, the

subsampling technique is highly recommended. By subsampling,

we are simply choosing a rather smaller subset of the initial data

set and generating our Isolation Forest from the subsample.

This subsampling technique alleviates the following two issues:

 Swamping: There are just too many data points so that normal

instances can be “close” to anomalies. In other words, it is

expected in this case that a large number of partitions are

needed to isolate anomalies. It's much harder to differentiate

the anomalies against normal instances.

 Masking: There are so many anomalies they form an anomaly

cluster, so to speak. In other words, again, a large number of

partitions to isolate anomalies is expected due to the rather

dense and large anomaly cluster.

DIMENSIONALITY REDUCTION

A real-life outlier detection problem may often be a high-

dimensional one. In that case, it may be possible to use some

dimensionality reduction techniques prior to applying the Isolation

Forest algorithm. For example:

 Principal component analysis (PCA): A widely used

unsupervised linear dimensionality reduction technique. It

essentially reduces the initial dimension to a few factors that

have significant explanatory power

 Autoencoder (AE): A rather modern unsupervised

linear/nonlinear dimensionality reduction technique. The gist of

this technique is ultimately the same as that of the PCA.

However, AE uses artificial neural net structures. This

inherently allows the model to take into account the

nonlinearity across initial factors.

STATISTICAL CRITERION

For a practitioner interested in implementing the Isolation Forest

algorithm, the main question is how to embed this algorithm in an

automated reporting solution. While human eyes can spot some

outliers in an “intuitive” way, an automated solution must rely on

quantitative ways of determining for each data point whether or

not it is an outlier.

The most obvious approach would be to implement a “point

threshold”—a data point would be considered an outlier if and

only if its anomaly score is above a certain threshold, such as

0.75. A more refined approach would be to consider a

combination of a “point threshold” and a statistical one. For

example, we could consider the distribution of the anomaly

scores and examine for each data point how the deletion of this

data point would impact the distribution. A possible statistical

criterion could be based on the kurtosis:

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠(𝑆[𝑇]) > 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠(𝑆[𝑡]) + 𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 𝐺𝑎𝑝

Here, 𝑆[𝑇] is a vector of all anomaly scores including a potential

outlier while 𝑆[𝑡] is a vector of anomaly scores for all but

excluding the potential outlier and Significance Gap is a positive

user-defined parameter. In Figure 12, we can see how the

kurtosis on the right diagram is significantly higher than that on

the left diagram, because a data point featuring a high anomaly

score is included in the former but not in the latter.

MILLIMAN WHITE PAPER

See the forest for the trees 7 December 2019

FIGURE 12: DIFFERENT KURTOSIS

Note: The underlying data for this visualization is not relevant to the data used in the previous sections. The data was used merely to illustrate the concept of kurtosis.

EXPERT JUDGMENT

Another important practical consideration is the degree of expert

judgment required to use the Isolation Forest algorithm. As

discussed in Section 2 above, the user would have to specify a

few parameters such as the total number of trees or the tree

depth. A possible approach is to set the total number of trees in

the forest at 20 to 30 and to set the simulated tree length to the

logarithm of the sample size:

 According to Liu, F.T. et al., the algorithm converges well

before the forest size of 100 and we typically produce good

results using a forest size of 20 to 30 or even 15 trees.

 Generation of long trees should not be necessary to detect

outliers.

That said, the user should be aware of the following caveat: If the

movements of the underlying data in a given vector space are

volatile and/or there are known data quality issues, then the

Isolation Forest algorithm would not necessarily be able to

reliably detect outliers.

DATA SETS CONTAINING CATEGORICAL VARIABLES

So far, we have only considered continuous data in the sections

above, but real-life problems often contain mixed data sets

featuring both continuous and categorical variables.

Therefore, we would also like to indicate how to apply the

Isolation Forest algorithm to a problem that contains both

continuous variables and categorical ones. Please refer to the

appendix for a rather detailed example.

CONCLUSION

The Isolation Forest algorithm explicitly isolates anomalies

instead of profiling normal instances, unlike more traditional

outlier detection algorithms. The gist of the algorithm is that the

“fewer and different” data points will display significantly shorter

isolation tree paths, closer to the root of each tree, as opposed to

the “more and common” data points.

The algorithm works well with both small and large data sets. It

performs well on smaller data sets because it does not need to

train a model based on a large number of normal instances.

Equally, it is capable of efficiently scaling for good results and

performance on larger data sets, due to the subsampling step.

Last but not least, it has been shown that the Isolation Forest

algorithm features a linear run-time complexity and performs

better on high-dimensional problems than typical

distance/density-based approaches.

We conclude our paper by listing the main practical benefits of

using the Isolation Forest algorithm:

 The Isolation Forest unlocks insights from large and small

underlying data

 It can deal with both continuous and categorical data

 The algorithm only requires a moderate degree of expert

judgment and hence lends itself well to an automated

application

We have seen the Isolation Forest improve the robustness of

outsourcing solutions. More generally speaking, this algorithm

can help enhance any financial reporting process by detecting

bad input data in an automated way.

MILLIMAN WHITE PAPER

See the forest for the trees 8 December 2019

Appendix
For the sake of simplicity, we would like to illustrate our

suggested treatment of categorical variables on a simple two-

dimensional example rather than in theoretical terms.

Figure 13 displays a contrived weather data set featuring just two

dimensions, namely a continuous variable temp (temperature)

and a categorical variable type with four possible choices,

namely “cloudy,” “rainy,” “snowy,” and “sunny.”

FIGURE 13: WEATHER DATA FEATURING TWO DIMENSIONS

 TEMP TYPE

x0 20 cloudy

x1 28 sunny

x2 22 rainy

x3 33 snowy

x4 32 sunny

x5 16 cloudy

In order to apply the algorithm discussed above to this problem,

we would have to somehow assign numerical values to the

weather types. A naïve way of doing this would be via the

alphabetical order—e.g. we might assign 0 to “cloudy,” 1 to

“rainy,” 2 to “snowy,” and 3 to “sunny.” The reader might already

realize why this would not be a great idea—indeed, many binary

splits in the dimension “type,” for example a split at 1.5—would

not discern between the weather types “snowy” and “sunny,”

although these weather types are very different from one

another. So exactly how does this problem differ from the purely

continuous ones discussed above? If the variable “type” had

been a continuous one, we would have been able to implicitly

assume that its values are all logically ordered, so that, e.g., a

value of 2 would be genuinely “closer” to a value of 3 than, say, a

value of 0 in the Euclidean sense. However, this implicit assumption

is apparently not true in the nominal categorical case. In other

words, one artificial numerical ordering of the nominal categorical

variable would not be genuinely “better” than the others.

Therefore, we are facing the question of what would happen if

we tried out two different mappings assigning numerical values

to our nominal categorical weather types. Figure 14 shows one

such artificial labelling for our nominal categorical variable—

label encoding.

FIGURE 14: LABEL ENCODING FOR WEATHER DATA

 TEMP TYPE RANDOM LABELLING OF WEATHER TYPE

x0 20 cloudy 0

x1 28 sunny 1

x2 22 rainy 2

x3 33 snowy 3

x4 32 sunny 1

x5 16 cloudy 0

Making use of this labeling, we can generate the isolation tree

shown in Figure 15.

FIGURE 15: ISOLATION TREE FOR WEATHER DATA

So far, so good, it might seem. But what would happen if we

used a different artificial labeling for our nominal categorical

variable? Figure 16 shows such an alternative labeling.

FIGURE 16: ALTERNATIVE LABELING FOR WEATHER DATA

 TEMP TYPE RANDOM LABELLING OF WEATHER TYPE

x0 20 cloudy 0

x1 28 sunny 3

x2 22 rainy 1

x3 33 snowy 2

x4 32 sunny 3

x5 16 cloudy 0

temp I / 25

type I /1.5 type I / 2.5

temp / 18 temp I / 30

MILLIMAN WHITE PAPER

Applying this labeling, we can generate the isolation tree shown in

Figure 17.

FIGURE 17: ISOLATION TREE FOR WEATHER DATA APPLYING

ALTERNATIVE LABELING

As we can see, we have now obtained an isolation tree that

differs from that shown in Figure 15. There is no “canonical”

assignment of numerical values to the nominal categorical

variable that would be “better” than the others, and an application

of a particular assignment throughout the process would

introduce spurious bias.

Therefore, our suggestion is to randomly reshuffle the assignment of

numerical values to the nominal categorical variable at each child

node of the tree. This additional randomization step will enable

the algorithm to properly deal with categorical variables.

temp II / 25

type II / 1.5 type II / 2.5

temp / 18 temp II / 30

CONTACT

Hyunsu Kim

hyunsu.kim@milliman.com

Michael Leitschkis

michael.leitschkis@milliman.com

© 2019 Milliman, Inc. All Rights Reserved. The materials in this document represent the opinion of the authors and are not representative of the views of Milliman, Inc. Milliman does not certify the

information, nor does it guarantee the accuracy and completeness of such information. Use of such information is voluntary and should not be relied upon unless an independent review of its accuracy

and completeness has been performed. Materials may not be reproduced without the express consent of Milliman.

Milliman is among the world’s largest providers of actuarial and related

products and services. The firm has consulting practices in life insurance

and financial services, property & casualty insurance, healthcare, and

employee benefits. Founded in 1947, Milliman is an independent firm with

offices in major cities around the globe.

milliman.com

http://www.milliman.com/
http://www.milliman.com/

